Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory
نویسندگان
چکیده
The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of "stress saving" that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.
منابع مشابه
Thermal Creep Analysis of Functionally Graded Thick-Walled Cylinder Subjected to Torsion and Internal and External Pressure
Safety analysis has been done for the torsion of a functionally graded thick-walled circular cylinder under internal and external pressure subjected to thermal loading. In order to determine stresses the concept of Seth’s transition theory based on generalized principal strain measure has been used. This theory simplifies the set of mechanical equations by mentioning the order of the measure of...
متن کاملSafety Analysis Using Lebesgue Strain Measure of Thick-Walled Cylinder for Functionally Graded Material under Internal and External Pressure
Safety analysis has been done for thick-walled circular cylinder under internal and external pressure using transition theory which is based on the concept of generalized principal Lebesgue strain measure. Results have been analyzed theoretically and discussed numerically. From the analysis, it can be concluded that circular cylinder made of functionally graded material is on the safer side of ...
متن کاملCalculating Stress Intensity Factor for Small Edge Radial Cracks on an Orthotropic Thick-walled Cylinder Subjected to Internal Pressure using the Average Stress
In this paper, the problem of calculating the stress intensity factor (SIF) for an orthotropic thick-walled cylinder with a small radial crack subject to internal pressure is considered. The crack is assumed to be an edge crack on the external radius of the cylinder. The stress intensity factor is calculated by superposition of an uncracked cylinder with uniform stress distribution and a cylind...
متن کاملThermo-elastic Analysis of Functionally Graded Thick- Walled Cylinder with Novel Temperature – Dependent Material Properties using Perturbation Technique
In this work, thermo – elastic analysis for functionally graded thick – walled cylinder with temperature - dependent material properties at steady condition is carried out. The length of cylinder is infinite and loading is consist of internal hydrostatic pressure and temperature gradient. All of physical and mechanical properties expect the Poisson's ratio are considered as multiplied an expone...
متن کاملNon-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading
In this study, the non-linear creep behaviour of a thick-walled cylinder made of stainless steel 316 is investigated using a semi-analytical method. The thick-walled cylinder is under a uniform internal pressure and a non-axisymmetric thermal field as a function of the radial and circumferential coordinates. For the high temperature and stress levels, creep phenomena play a major role in stress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014